Abstract

The involvement of GTP binding proteins in muscarinic acetylcholine receptor (mAChR) mediated responses of cultured chick embryonic cardiac muscle cells was studied by using islet activating protein (IAP) from Bordetella pertussis. Incubation of cells for 24 h with IAP resulted in inhibition of subsequent IAP-catalyzed incorporation of [alpha-32P]ADP-ribose into membrane proteins of Mr 39 000 (No alpha) and 41 000 (Ni alpha); treatment of cultures with 5 ng/mL IAP was sufficient to ADP-ribosylate all available No alpha and Ni alpha. Inhibition of forskolin-stimulated cAMP accumulation by the muscarinic agonist carbachol was abolished in cultures pretreated with IAP. The affinity of carbachol for the mAChR in membranes from IAP-treated cells was considerably decreased compared to control membranes and was not further decreased by addition of guanyl-5'-yl imidodiphosphate. In contrast, the affinity of carbachol for the mAChR on intact cells was not affected by pretreatment with IAP. To investigate the involvement of No and/or Ni in mAChR-mediated increases in K+ permeability, the effect of IAP treatment on mAChR stimulation of 86Rb+ efflux was determined. Treatment of cultures with 5 ng/mL IAP for 24 h completely blocked the stimulation of 86Rb+ efflux evoked by carbachol. Because previous work has shown that mAChR regulation of K+ permeability is independent of changes in cAMP levels, these results suggest a role for No and/or Ni in coupling the mAChR directly to K+ channels in the heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.