Abstract

We present numerical calculations of the linearized Navier-Stokes equations for axially extended and axially localized spiral structures in the Taylor-Couette system. The eigenvalue surface for spiral vortices with azimuthal wave number M=2 shows significantly more structure than that for vortices with M=0 and 1. Islands are found in parameter space where axially periodic vortex perturbations can grow. Bicriticality of different axial wave numbers is observed. Furthermore, parameter islands of absolute instability are found where wave packets consisting of near-critical extended perturbations can grow and expand via oppositely moving fronts. Some results are compared with those of the Ginzburg-Landau approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.