Abstract

The eastern deciduous forest is a mix of arbuscular (AM) and ectomycorrhizal (EM) trees, but land use legacies have increased the abundance of AM trees like Acer spp. (maple). Although these legacies have not changed the abundance of some EM trees like Betula spp. (birch), EM conifers like Tsuga canadensis (hemlock), and Pinus strobus (pine) have declined. We used a soil bioassay to investigate if the microbial community near EM birch (birch soil) contains a greater abundance and diversity of EM fungal propagules compatible with T. canadensis and P. strobus compared to the community associated with the surrounding AM-dominated secondary forest matrix (maple soil). We also tested the effectiveness of inoculation with soil from a nearby EM-dominated old-growth forest as a restoration tool to reintroduce EM fungi into secondary forest soils. Finally, we examined how seedling growth responded to EM fungi associated with each treatment. Seedlings grown with birch soil were colonized by EM fungi mostly absent from the surrounding maple forest. Hemlock seedlings grown with birch soil grew larger than hemlock seedlings grown with maple soil, but pine seedling growth did not differ with soil treatment. The addition of old-growth soil inoculum increased hemlock and pine growth in both soils. Our results found that EM trees are associated with beneficial EM fungi that are mostly absent from the surrounding AM-dominated secondary forest, but inoculation with old-growth soil is effective in promoting the growth of seedlings by reintroducing native EM fungi to the AM-dominated forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call