Abstract

Increasing evidence suggests that geological or climatic events in the past triggered the radiative diversification of both animals and plants on islands as well as continents. The Qinghai–Tibetan Plateau (QTP) has been extensively uplifted since the Miocene, but there is little information on possible links between these events and biological diversification in this and adjacent regions. Partly to explore such links, we have examined the diversification of Saussurea (Asteraceae: Cardueae), a species-rich genus that is mostly endemic to QTP, but also occurs in arid highlands elsewhere in the Northern Hemisphere. The phylogenetic analyses were conducted on the basis of the nuclear (internal transcribed spacer, ITS) and plastid (trnL-F and psbA-trnH) sequences from 55 species, representing 19 sections from all six subgenera of Saussurea, and species from 15 genera of the Cardueae. The results suggest that the currently circumscribed genus Saussurea (s.l.) is a polyphyletic group and that five sections should be excluded from the genus. Samples from the other 14 sections (representing five subgenera) clustered as a monophyletic group (here designated the Saussurea s.s. lineage, SSSL) with high statistical support. However, none of the analyses (nuclear, plastid or combined) resolved SSSL's infrageneric phylogeny, and the parallel clades of the lineage indicate that island-like adaptive radiation occurred. Furthermore, this radiation appears to have occurred 14–7 Mya, during the period of the major uplift events of QTP. Thus, our results support the hypothesis that geological events may play important roles in driving biological diversification through continental radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.