Abstract

Molybdenum trioxide (MoO3) nanobelt is very attractive anode electrode for LIBs because of their high theoretical capacity. To enhance the capacity and cyclic performance of MoO3-based electrode materials of lithium ion battery (LIB), here, as a proof of concept, we report in this work a novel surface disordered engineering strategy of fabrication of island-like mesoporous amorphous Fe2O3 layer on MoO3 nanobelts (a-Fe2O3@MoO3). The island-like mesoporous amorphous Fe2O3 layer is obtained by direct hydrolysis of FeCl3.6H2O on MoO3 nanobelts assisted by low-temperature heat treatment. Here, the FeCl3.6H2O plays a multifunctional role of the formation of amorphous Fe2O3 layer, disordering MoO3 nanobelts and increasing the specific surface area and porosity of MoO3 nanobelts. The as-formed amorphous Fe2O3 layer is demonstrated to significantly improve the kinetics behavior of lithium-ion diffusion and electronic transport due to its isotropic feature during cycling. As a result, the designed anode exhibits dramatically enhanced electrochemical properties compared with individual MoO3 nanobelts and physical mixture of Fe2O3 powdes and MoO3 nanobelts: a high initial discharge capacity of 1523mAhg⿿1 at 50mAg⿿1, remarkable rate capability (386mAhg⿿1 at 500mAg⿿1) and outstanding cycling performance. Our results reveal new possibilities of designing amorphous oxides layer of anode electrodes by surface disorder engineering on achieving enhanced LIBs performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.