Abstract

Aim I analysed distributional and phylogenetic information on weevils (Coleoptera: Curculionidae) from the Falklands, and integrated it with molecular, palaeontological and geological information to infer a geobiotic scenario. Location Falkland Islands (Islas Malvinas). Methods The panbiogeographical analysis was based on data on 23 Falkland species and their related taxa from southern South America. For the cladistic biogeographical analysis I analysed six weevil taxa for which phylogenetic hypotheses are available (the generic groups Cylydrorhinus, Strangaliodes and Falklandius, and the genera Antarctobius, Germainiellus and Puranius). Results from this analysis were compared with previous regionalizations. Cenocrons (sets of taxa that share the same biogeographical history) were identified by considering temporal information provided by fossils and molecular clocks. Finally, a geobiotic scenario was proposed by integrating the available information. Results Six generalized tracks were detected: Maule–Valdivian forests, Magellanic forest, Magellanic moorland, Falkland Islands, Magellanic forest–Magellanic moorland, and Magellanic forest–Falkland Islands. A node was identified in the Magellanic forest, based on the overlap of two generalized tracks. A single general area cladogram was obtained, implying the following sequence: (Magellanic moorland (Maule–Valdivian forests (Magellanic forest, Falkland Islands))). The Falklands are classified here as a biogeographical province in the Austral realm, Andean region and Subantarctic subregion. Falkland weevils seem to belong to a single Subantarctic cenocron. The sequence of events deduced implies the following steps: development of the Subantarctic biota in southern South America, arrival of the Falkland crustal block from South Africa in the Early Cretaceous, geodispersal of the Subantarctic cenocron from southern South America to the Falklands during the Early Oligocene, vicariance of the Magellanic moorland, vicariance of the Maule–Valdivian forests, and final vicariance between the Magellanic forest and the Falkland Islands. Main conclusions The biotic components identified support the connection of the Falkland weevils with the Magellanic forest. Falkland weevils belong to a single cenocron, dated to at least the Early Oligocene, when geodispersal from southern South America may have occurred. An older African cenocron may have been replaced completely by the Subantarctic one when the proto-Falklands made contact with the Patagonian continental shelf. A geobiotic scenario implying vicariance events related to sea-level variations could explain the distributional patterns analysed herein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call