Abstract
In Chen and Turunen (Commun Math Phys 374(3):1577–1643, 2020), we have studied the Boltzmann random triangulation of the disk coupled to an Ising model on its faces with Dobrushin boundary condition at its critical temperature. In this paper, we investigate the phase transition of this model by extending our previous results to arbitrary temperature: We compute the partition function of the model at all temperatures, and derive several critical exponents associated with the infinite perimeter limit. We show that the model has a local limit at any temperature, whose properties depend drastically on the temperature. At high temperatures, the local limit is reminiscent of the uniform infinite half-planar triangulation decorated with a subcritical percolation. At low temperatures, the local limit develops a bottleneck of finite width due to the energy cost of the main Ising interface between the two spin clusters imposed by the Dobrushin boundary condition. This change can be summarized by a novel order parameter with a nice geometric meaning. In addition to the phase transition, we also generalize our construction of the local limit from the two-step asymptotic regime used in Chen and Turunen (2020) to a more natural diagonal asymptotic regime. We obtain in this regime a scaling limit related to the length of the main Ising interface, which coincides with predictions from the continuum theory of quantum surfaces (a.k.a. Liouville quantum gravity).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.