Abstract
We study a two-dimensional ferromagnetic Ising model on a series of regular lattices, which are represented as a tessellation of polygons with p ⩾ 5 sides, such as pentagons (p = 5), hexagons (p = 6), etc. Such lattices are on hyperbolic planes, which have constant negative scalar curvatures. We calculate critical temperatures and scaling exponents by the use of the corner transfer matrix renormalization group method. As a result, the mean-field-like phase transition is observed for all the cases p ⩾ 5. Convergence of the calculated transition temperatures with respect to p is investigated toward the limit p → ∞, where the system coincides with the Ising model on the Bethe lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.