Abstract

Abstract Many models of financial markets exist, but most of them simulate single asset markets. We study a multi asset Ising model of a financial market. Each agent has two possible actions (buy/sell) for every asset. The agents dynamically adjust their coupling coefficients according to past market returns and external news. This leads to fat tails and volatility clustering independent of the number of assets. We find that a separation of news into different channels leads to sector structures in the cross correlations, similar to those found in real markets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.