Abstract

The existence and identity of non-Watson-Crick base pairs (bps) within RNA bulges, internal loops, and hairpin loops cannot reliably be predicted by existing algorithms. We have developed the Isfold (Isosteric Folding) program as a tool to examine patterns of nucleotide substitutions from sequence alignments or mutation experiments and identify plausible bp interactions. We infer these interactions based on the observation that each non-Watson-Crick bp has a signature pattern of isosteric substitutions where mutations can be made that preserve the 3D structure. Isfold produces a dynamic representation of predicted bps within defined motifs in order of their probabilities. The software was developed under Windows XP, and is capable of running on PC and MAC with Matlab 7.1 (SP3) or higher. A PC standalone version that does not require Matlab also is available. This software and a user manual are freely available at www.ucsf.edu/frankel/isfold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.