Abstract

Use is made of a form of the stress energy tensor of a perfect fluid, previously derived for special relativity, to show that for irrotational isentropic motions a co-moving coordinate system exists in which both sides of the Einstein gravitational field equations may be expressed in terms of the dependent variables of the self-gravitational problem for a perfect fluid. It is shown that for a space-time with plane symmetry the field equations and the assumption of isentropy imply the conservation of mass. General methods for dealing with these field equations are given for the static and spatially independent cases. Approximate solutions are obtained for other specific cases. The general exact solution is obtained for the incompressible case. Properties of the incompressible case are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.