Abstract

We study stable circular orbits in spherically symmetric AdS black holes in various dimensions and their limiting innermost stable circular orbits. We provide analytic expressions for their size, angular velocity and angular momentum in a large black hole mass regime. The dual interpretation is in terms of meta-stable states not thermalising in typical thermal scales and whose existence is due to non-perturbative effects on the spatial curvature. Our calculations reproduce the binding energy known in the literature, but also include a binding energy in the radial fluctuations corresponding to near circular trajectories. We also describe how particles are placed on these orbits from integrated operators on the boundary: they tunnel inside in a way that can be computed from both complex geodesics in the black hole background and from the WKB approximation of the wave equation. We explain how these two computations are related.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.