Abstract

Nuclear factor-kappaB (NF-κB) activation occurs following ischemic preconditioning (IPC) in brain. However, the upstream signaling messengers and down-stream targets of NF-κB required for induction of IPC remain undefined. In a previous study, we demonstrated that epsilon protein kinase c (εPKC) was a key mediator of IPC in brain. Activation of εPKC induced cyclooygenase-2 (COX-2) expression and conferred ischemic tolerance in the neuronal and hippocampal slice models. Here, we hypothesized that IPC-mediated COX-2 expression was mediated by NF-κB. We tested this hypothesis in mixed cortical neuron/astrocyte cell cultures. To simulate IPC or ischemia, cell cultures were exposed to 1 or 4 h of oxygen-glucose deprivation, respectively. Our results demonstrated translocation of p65 and p50 subunits of NF-κB into nucleus following IPC or εPKC activation. NF-κB inhibition with pyrrolidine dithiocarbamate (10 μM) abolished IPC or εPKC activator-mediated neuroprotection indicating that NF-κB activation was involved in ischemic tolerance. In parallel studies, inhibition of either εPKC or the extracellular signal-regulated kinase (ERK 1/2) pathway reduced IPC-induced NF-κB activation. Finally, inhibition of NF-κB blocked IPC-induced COX-2 expression. In conclusion, we demonstrated that IPC-signaling cascade comprises εPKC activation→ERK1/2 activation→NF-κB translocation to nucleus→COX-2 expression resulting in neuroprotection in mixed neuronal culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.