Abstract

The ability of a competitive N-methyl-D-aspartate (NMDA) receptor antagonist (D-CPP-ene) to reduce irreversible brain damage has been examined in a rodent model of acute subdural hematoma. Acute subdural hematoma was produced by the slow injection of 400 microliters homologous blood into the subdural space overlying the parietal cortex in halothane-anesthetized rats. Brain damage was assessed histologically in sections at multiple coronal planes in animals sacrificed 4 hours after induction of the subdural hematoma. Pretreatment with D-CPP-ene (15 mg/kg) significantly reduced the volume of ischemic brain damage produced by the subdural hematoma from 62 +/- 8 cu mm (mean +/- standard error of the mean) in vehicle-treated control rats to 29 +/- 7 cu mm in drug-treated animals. These data demonstrate the anti-ischemic efficacy of NMDA antagonists in an animal model of intracranial hemorrhage in which intracranial pressure is elevated, and suggest that excitotoxic mechanisms (which are susceptible to antagonism by D-CPP-ene) may play a role in the ischemic brain damage which is observed in patients who die after acute subdural hematoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.