Abstract

The blood–brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood–brain barrier. Hypoxic–ischemic damage to the blood–brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood–brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood–brain barrier function in the fetus. Blood–brain barrier function was quantified with the blood-to-brain transfer constant (Ki) and tight junction proteins by Western immunoblot in fetal sheep at 127days of gestation without ischemia, and 4, 24, or 48h after ischemia. The largest increase in Ki (P<0.05) was 4h after ischemia. Occludin and claudin-5 expressions decreased at 4h, but returned toward control levels 24 and 48h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between Ki and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood–brain barrier function after ischemia. We conclude that impaired blood–brain barrier function is an important component of hypoxic–ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (Ki) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4h after ischemia and blood–brain barrier function improves early after injury because the blood–brain barrier is less permeable 24 and 48 than 4h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood–brain barrier permeability after ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.