Abstract

Since its introduction in 1960, CPR has evolved into a complex program involving not only the medical community but also the lay public. Currently, program activities include instruction of the lay public in basic life support techniques, development and deployment of emergency medical systems, recommendations for drug protocols for advanced cardiac life support and, most recently, introduction of new methods for tissue protection following resuscitation. After 25 years of experience, we are beginning to understand the pathophysiology of tissue ischemia during cardiac arrest and the interventions required to improve chances of survival and quality of life of the cardiac arrest victim. Recent data in the literature suggest that modification of certain interventions in the resuscitation program may be needed. The poor neurologic outcomes with prolonged standard CPR show that it is not protective after 4 to 6 minutes of cardiac arrest. Modifications to this technique, including SVC-CPR or IAC-CPR, have not been shown to increase resuscitability or hospital discharge rates. Human studies of open-chest cardiac massage are needed to evaluate this option. Defibrillation is the definitive treatment for ventricular fibrillation. Greater emphasis should be placed on the earliest possible delivery of this treatment modality. Computerized defibrillators may provide greater and earlier access to defibrillation in the homes of patients at high risk of ventricular fibrillation. They may also be applicable by untrained public service personnel (police and firemen), individuals in geographically inaccessible areas (aircraft), or emergency medical technicians in rural areas where skill retention is a significant problem. Calcium has no proved benefit in cardiac resuscitation. There is biochemical evidence that it may be harmful in brain resuscitation. Its use in resuscitation should be discontinued. The dose of epinephrine currently advocated in the ACLS protocols may be inadequate to increase aortic diastolic pressure and coronary and cerebral perfusion pressures and thus aid resuscitation. Animal studies indicate that substantial increases in the current dosage are needed to achieve these effects. Human studies are needed to verify these results. A role for calcium antagonists in the treatment of postarrest encephalopathy has been demonstrated in animals and is currently undergoing clinical trials. Iron-dependent lipid peroxidative cell membrane injury may be important in the pathogenesis of postarrest encephalopathy. Animal studies suggest that the iron chelator deferoxamine may have a significant therapeutic role in the treatment of postarrest encephalopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call