Abstract

IntroductionAlthough ischemia-reperfusion (I/R) injury varies between cortical and subcortical regions, its effects on specific regions remain unclear. In this study, we used various magnetic resonance imaging (MRI) techniques to examine the spatiotemporal dynamics of I/R injury within the salvaged ischemic penumbra (IP) and reperfused ischemic core (IC) of a rodent model, with the aim of enhancing therapeutic strategies by elucidating these dynamics. Materials and methodsA total of 17 Sprague–Dawley rats were subjected to 1 h of transient middle cerebral artery occlusion with a suture model. MRI, including diffusion tensor imaging (DTI), T2-weighted imaging, perfusion-weighted imaging, and T1 mapping, was conducted at multiple time points for up to 5 days during the I/R phases. The spatiotemporal dynamics of blood–brain barrier (BBB) modifications were characterized through changes in T1 within the IP and IC regions and compared with mean diffusivity (MD), T2, and cerebral blood flow. ResultsDuring the I/R phases, the MD of the IC initially decreased, normalized after recanalization, decreased again at 24 h, and peaked on day 5. By contrast, the IP remained relatively stable. Both the IP and IC exhibited hyperperfusion, with the IP reaching its peak at 24 h, followed by resolution, whereas hyperperfusion was maintained in the IC until day 5. Despite hyperperfusion, the IP maintained an intact BBB, whereas the IC experienced persistent BBB leakage. At 24 h, the IC exhibited an increase in the T2 signal, corresponding to regions exhibiting BBB disruption at 5 days. ConclusionsHyperperfusion and BBB impairment have distinct patterns in the IP and IC. Quantitative T1 mapping may serve as a supplementary tool for the early detection of malignant hyperemia accompanied by BBB leakage, aiding in precise interventions after recanalization. These findings underscore the value of MRI markers in monitoring ischemia-specific regions and customizing therapeutic strategies to improve patient outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call