Abstract

Previous studies have provided evidence that, in the early hours of ischemic stroke, a luminal membrane blood-brain barrier (BBB) Na-K-Cl cotransporter (NKCC) participates in ischemia-induced cerebral edema formation. Inhibition of BBB NKCC activity by intravenous bumetanide significantly reduces edema and infarct in the rat permanent middle cerebral artery occlusion model of ischemic stroke. We demonstrated previously that the BBB cotransporter is stimulated by hypoxia, aglycemia, and AVP, factors present during cerebral ischemia. However, the underlying mechanisms have not been known. Ischemic conditions have been shown to activate p38 and JNK MAP kinases (MAPKs) in brain, and the p38 and JNK inhibitors SB-239063 and SP-600125, respectively, have been found to reduce brain damage following middle cerebral artery occlusion and subarachnoid hemorrhage, respectively. The present study was conducted to determine whether one or both of these MAPKs participates in ischemic factor stimulation of BBB NKCC activity. Cultured cerebral microvascular endothelial cell NKCC activity was evaluated as bumetanide-sensitive (86)Rb influx. Activities of p38 and JNK were assessed by Western blot and immunofluorescence methods using antibodies that detect total vs. phosphorylated (activated) p38 or JNK. We report that p38 and JNK are present in cultured cerebral microvascular endothelial cells and in BBB endothelial cells in situ and that hypoxia (7% O(2) and 2% O(2)), aglycemia, AVP, and O(2)-glucose deprivation (5- to 120-min exposures) all rapidly activate p38 and JNK in the cells. We also provide evidence that SB-239063 and SP-600125 reduce or abolish ischemic factor stimulation of BBB NKCC activity. These findings support the hypothesis that ischemic factor stimulation of the BBB NKCC involves activation of p38 and JNK MAPKs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.