Abstract

Considering that postsynaptic densities (PSD) are a functionally active zone involved in excitatory synaptic transmission we evaluated the influence of global, postdecapitative cerebral ischemia of 15 min duration on characteristic protein constituents of PSD in rats. Ischemia induced changes in the assembly and function of calcium, calmodulin-dependent kinase II (CaMKII), calpains and a novel, 85 kDa/RING3 kinase but to different extents. CaMKII is translocated toward the PSD very rapidly and extensively after the first seconds of ischemia. Concomitantly, the total phosphorylating potency of this kinase with endogenous, as well as exogenous, substrates was elevated but to a lower extent than suggested by the increased protein content. Of the two brain-specific isoforms of calpain (μ and m), only recently recognized in PSD, the proteolytically activated, 76 kDa subunit of μ-calpain was significantly down-regulated after 15 min of brain ischemia. However, this effect is coupled with the decline of fodrin, the only calpain substrate that has been demonstrated to be a calpain target in vivo. Together, these findings may suggest that calpains, primarily activated by calcium in ischemic PSD, are subsequently degraded. A new observation is the relatively high phosphorylating activity of a novel, 85 kDa/RING3 kinase in the PSD which, independently of other kinase systems, was greatly enhanced after ischemia. These data provide evidence that the signal transduction processes could be rapidly altered by short-term (15 min) brain ischemia due to changes in the assembly and function of PSD connected proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call