Abstract

Introduction: In ventricular myocytes, spontaneous release of calcium (Ca2+) from the sarcoplasmic reticulum via ryanodine receptors (“Ca2+ sparks”) is acutely increased by stretch, due to a stretch-induced increase of reactive oxygen species (ROS). In acute regional ischemia there is stretch of ischemic tissue, along with an increase in Ca2+ spark rate and ROS production, each of which has been implicated in arrhythmogenesis. Yet, whether there is an impact of ischemia on the stretch-induced increase in Ca2+ sparks and ROS has not been investigated. We hypothesized that ischemia would enhance the increase of Ca2+ sparks and ROS that occurs with stretch.Methods: Isolated ventricular myocytes from mice (male, C57BL/6J) were loaded with fluorescent dye to detect Ca2+ sparks (4.6 μM Fluo-4, 10 min) or ROS (1 μM DCF, 20 min), exposed to normal Tyrode (NT) or simulated ischemia (SI) solution (hyperkalemia [15 mM potassium], acidosis [6.5 pH], and metabolic inhibition [1 mM sodium cyanide, 20 mM 2-deoxyglucose]), and subjected to sustained stretch by the carbon fiber technique (~10% increase in sarcomere length, 15 s). Ca2+ spark rate and rate of ROS production were measured by confocal microscopy.Results: Baseline Ca2+ spark rate was greater in SI (2.54 ± 0.11 sparks·s−1·100 μm−2; n = 103 cells, N = 10 mice) than NT (0.29 ± 0.05 sparks·s−1·100 μm−2; n = 33 cells, N = 9 mice; p < 0.0001). Stretch resulted in an acute increase in Ca2+ spark rate in both SI (3.03 ± 0.13 sparks·s−1·100 μm−2; p < 0.0001) and NT (0.49 ± 0.07 sparks·s−1·100 μm−2; p < 0.0001), with the increase in SI being greater than NT (+0.49 ± 0.04 vs. +0.20 ± 0.04 sparks·s−1·100 μm−2; p < 0.0001). Baseline rate of ROS production was also greater in SI (1.01 ± 0.01 normalized slope; n = 11, N = 8 mice) than NT (0.98 ± 0.01 normalized slope; n = 12, N = 4 mice; p < 0.05), but there was an acute increase with stretch only in SI (+12.5 ± 2.6%; p < 0.001).Conclusion: Ischemia enhances the stretch-induced increase of Ca2+ sparks in ventricular myocytes, with an associated enhancement of stretch-induced ROS production. This effect may be important for premature excitation and/or in the development of an arrhythmogenic substrate in acute regional ischemia.

Highlights

  • In ventricular myocytes, spontaneous release of calcium (Ca2+) from the sarcoplasmic reticulum via ryanodine receptors (“Ca2+ sparks”) is acutely increased by stretch, due to a stretch-induced increase of reactive oxygen species (ROS)

  • Our results demonstrate that ischemia enhances the stretch-induced increase of Ca2+ spark rate in isolated ventricular myocytes, with an associated enhancement of stretch-induced ROS production

  • There was no effect of time on Ca2+ spark rate (Figure 2A) or its change with stretch (Figure 2B) in the normal Tyrode (NT) group, as values before, during, and after stretch and the change with stretch did not vary over the 30 min

Read more

Summary

Introduction

Spontaneous release of calcium (Ca2+) from the sarcoplasmic reticulum via ryanodine receptors (“Ca2+ sparks”) is acutely increased by stretch, due to a stretch-induced increase of reactive oxygen species (ROS). Follow up studies have shown that the acute stretch-induced increase in Ca2+ sparks results from a microtubule-dependent increase in reactive oxygen species (ROS) production by NADPH oxidase 2 (NOX2) with stretch, which has been termed X-ROS (Prosser et al, 2011). Ca2+ spark rate and X-ROS production have been shown to be enhanced by cyclic stretch (as occurs during filling with each heartbeat) and graded by stretch amplitude and frequency, which may tune the mechanical activity and redox state of cardiac myocytes to changes in physiological demand (Prosser et al, 2013b)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.