Abstract

We have used radioligand binding techniques and subcellular fractionation to assess whether changes in expression of myocardial alpha 1- and beta-adrenergic receptors are mediated by a redistribution of receptors between various membrane fractions. Three fractions were prepared from the left ventricles of guinea pigs that underwent either 1 h of ischemia or injection of epinephrine (0.25 mg/kg ip): a crude membrane, a purified sarcolemma, and a light vesicle fraction. In control animals alpha 1-adrenergic receptors ([3H]prazosin binding) in light vesicles was only 25% of the total alpha 1-receptor density found in sarcolemmal and light vesicle fractions as compared with 50% for beta-adrenergic receptors ([125I]iodocyanopindolol binding sites). Although ischemia was associated with a 53% decrease in the number of light vesicle beta-adrenergic receptors and a 42% increase in the number of sarcolemma beta-receptors (P less than 0.05), there was no change in the number of light vesicle alpha 1-receptors, even though the number of sarcolemmal alpha 1-receptors increased 34%. Epinephrine treatment promoted internalization of beta-adrenergic receptors; sarcolemma beta-receptors decreased 37% and light vesicle beta-receptors increased 28% (P less than 0.025). For alpha 1-receptors, epinephrine treatment decreased the number of sarcolemmal receptors 41% (P less than 0.025) but failed to increase the number of receptors in the light vesicle fraction. The changes in receptor binding to beta-adrenergic receptors in sarcolemmal fractions were mirrored by parallel changes in isoproterenol-stimulated adenylate cyclase activity. These results indicate that alpha 1- and beta-adrenergic receptors may undergo a different cellular itinerary in guinea pig myocardium.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call