Abstract

Recently it was suggested that ischaemic preconditioning (IP) protects the myocardium in a graded pattern as assessed by myocardial infarct size estimation. Using tissue biopsies we investigated the impact of the proposed graded pattern of protection on myocardial energy state in an open-chest porcine model of IP with either one (1xIP) or four (4xIP) episodes of preconditioning. Furthermore, we evaluated the relationship between interstitial energy-related metabolite levels obtained by the microdialysis technique and the degree of subsequent ischaemic insult. During the long ischaemia the difference between pre-ischaemic and post-ischaemic total adenylate pools and the sum of adenylate breakdown products (adenosine, inosine and hypoxanthine) as well as tissue lactate levels appeared as follows: non-IP > 1xIP > 4xIP (P < 0.05). Moreover interstitial peak levels of lactate, hypoxanthine and taurine displayed a graded pattern analogous to the development of ischaemic damage, where non-IP > 1xIP > 4xIP. We present for the first time concordant energy metabolic and morphometric data in support of IP being a stepwise phenomenon for protection of the ischaemic myocardium. Furthermore, IP resulted in proportionally higher levels of hypoxanthine (relative to inosine) in the ischaemic myocardium, suggesting a different handling of adenine nucleotide breakdown products in the IP myocardium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call