Abstract

This paper describes the Isarn speech synthesis system, which is a regional dialect spoken in the Northeast of Thailand. In this study, we focus to improve the prosody generation of the system by using the additional context features. In order to develop the system, the speech parameters (Mel-ceptrum and fundamental frequencies of phoneme within different phonetic contexts) were modelled using Hidden Markov Models (HMM). Synthetic speech was generated by converting the input text into context-dependent phonemes. Speech parameters were generated from the trained HMM, according to the context-dependent phonemes, and were then synthesized through a speech vocoder. In this study, systems were trained using three different feature sets: basic contextual features, tonal, and syllable-context features. Objective and subjective tests were conducted to determine the performance of the proposed system. The results indicated that the addition of the syllable-context features significantly improved the naturalness of synthesized speech.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.