Abstract

Nanoparticles can be used for effective pest management as a combined formulation of metal and some other material that has proven efficacy against a given pest. This study reports the synthesis, characterization and efficacy of Isaria fumosorosea-based zero-valent iron (ZVI) nanoparticles against sweet potato whitefly Bemisia tabaci (Gennadius). The I. fumosorosea-ZVI nanoparticles showed a characteristic surface plasmon absorption band at 470 nm during UV-visible spectroscopy. The scanning electron micrographs of nanoparticles showed spherical shaped nanoparticles with sizes ranging between 1.71 and 3.0µm. The EDX analysis showed the characteristic peak of iron at 0.6 and 6.8KeV. The XRD analysis showed characteristic peaks at 44.72°, 65.070°, 82.339° and 82.65°. The bioassay results indicated that the percentage of larval mortality of B. tabaci challenged with I. fumosorosea ZVI nanoparticles was both concentration and age dependent. Isaria fumosorosea ZVI nanoparticles showed high pathogenicity against second and third instar nymphs, and pupae with LC50 values of 19.17, 26.10 and 37.71 ppm, respectively. The LT50 was lowest for second instar nymphs (3.15 days) and highest for pupae (4.22 days) when inoculated with a concentration of 50 ppm. Isaria fumosorosea ZVI nanoparticles can be an eco-friendly tool for effective B. tabaci management. © 2019 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.