Abstract

Conventionally, the sensing and communication stages for edge intelligence systems are executed sequentially, leading to an excessive time of dataset generation and uploading. To combat the weakness, this paper proposes to accelerate edge intelligence via integrated sensing and communication (ISAC), where the sensing and communication stages are merged to make the best use of the wireless signals for the dual purpose of dataset generation and uploading. For the proposed ISAC-accelerated edge intelligence system, the resource allocation and beamforming should be jointly optimized to exploit the underlying ISAC benefits. We formulate a joint resource allocation and beamforming optimization problem. Despite the non-convexity, we obtain globally optimal solutions assuming that the constant maximal transmits power, and devise an alternating optimization algorithm for the original problem without such assumption. Furthermore, we analyze the ISAC acceleration gain of the proposed system over that of the conventional edge intelligence system. Both theoretic analysis and simulation results show that ISAC accelerates the conventional edge intelligence system when the duration of generating a sample is more than that of uploading a sample. Otherwise, the ISAC acceleration gain vanishes or even is negative. In this case, we derive a sufficient condition for positive ISAC acceleration gain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.