Abstract

AbstractIn recent years several authors have investigated binary search trees with minimal internal path length. In this paper we propose relaxing the requirement of inserting all nodes on one level before going to the next level. This leads to a new class of binary search trees called ISA [k] trees. We investigated the average locate cost per node, average shift cost per node, total insertion cost, and average successful search cost for ISA[k] trees. We also present an insertion algorithm with associated predecessor and successor functions for ISA[k] trees. For large binary search trees (over 160 nodes) our results suggest the use of ISA[2] or ISA[3] trees for best performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.