Abstract

The current boom of learned query optimizers (LQO) can be explained not only by the general continuous improvement of deep learning (DL) methods but also by the straightforward formulation of a query optimization problem (QOP) as a machine learning (ML) one. The idea is often to replace dynamic programming approaches, widespread for solving QOP, with more powerful methods such as reinforcement learning. However, such a rapid "game change" in the field of QOP could not pass without consequences - other parts of the ML pipeline, except for predictive model development, have large improvement potential. For instance, different LQOs introduce their own restrictions on training data generation from queries, use an arbitrary train/validation approach, and evaluate on a voluntary split of benchmark queries. In this paper, we attempt to standardize the ML pipeline for evaluating LQOs by introducing a new end-to-end benchmarking framework. Additionally, we guide the reader through each data science stage in the ML pipeline and provide novel insights from the machine learning perspective, considering the specifics of QOP. Finally, we perform a rigorous evaluation of existing LQOs, showing that PostgreSQL outperforms these LQOs in almost all experiments depending on the train/test splits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.