Abstract

Acute neuronal injury has devastating consequences with increased risks of morbidity and mortality. Among its survivors, neurological deficit is associated with loss of function, independence and quality of life. Currently, there is a distinctive lack of effective clinical strategies to obviate this problem. Xenon, a noble gas with anesthetic properties, exhibits neuroprotective effects. It is efficacious and nontoxic and has been used safely in clinical settings involving both anesthetic and imaging applications in patients of all ages. Xenon blocks the NMDA subtype of the glutamate receptor, a pivotal step in the pathway towards neuronal death. The preclinical data obtained from animal models of stroke, neonatal asphyxia and global ischemia induced by cardiac arrest, as well as recent data of traumatic brain injury, revealed that xenon is a potentially ideal candidate as a neuroprotectant. In addition, recent studies demonstrated that xenon can uniquely prevent anesthetic-induced neurodegeneration in the developing brain. Thus, clinical studies are urgently required to investigate the neuroprotective effects of xenon in the clinical setting of brain damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call