Abstract

Some studies suggest that the carbon intensity of electricity generated in the United Kingdom by using imported wood pellets from the southern United States is higher than that of coal-based electricity, whereas other studies suggest that the use of wood pellet-based electricity reduces carbon emissions significantly, relative to coal-based electricity. We developed the Forest Bioenergy Carbon Accounting Model (ForBioCAM 1.0) to analyze factors that influence the carbon intensity of wood pellet-based electricity, using a common set of assumptions and the same system boundary. We show that widely differing assessments of the carbon intensity of wood pellet-based electricity depend on the choice of forest management perspectives (landscape or stand), baselines (no harvest, or harvesting for the manufacture of traditional finished wood products), feedstocks (whole trees, pulpwood, or logging residues), forest management practices (change in rotation age), and the duration of the analysis itself. Unlike with a stand perspective, we demonstrate conditions under which a landscape perspective results in carbon savings net of avoided emissions from coal-based electricity. Our results also suggest that the two perspectives of forest management converge in their assessment of the positive carbon effects of various feedstock types used to manufacture wood pellets relative to a no-harvest baseline, and that the use of whole trees for wood pellets results in net carbon savings after a break-even period of about three years relative to a no-harvest scenario. The results of this study can guide future policy deliberations on the use of wood pellets as a renewable energy source worldwide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call