Abstract
This paper addresses the relationship between the Visual Assessment of cluster Tendency (VAT) algorithm and single linkage hierarchical clustering. We present an analytical comparison of the two algorithms in conjunction with numerical examples to show that VAT reordering of dissimilarity data is directly related to the clusters produced by single linkage hierarchical clustering. This analysis is important to understanding the underlying theory of VAT and, more generally, other algorithms that are based on VAT-ordered dissimilarity data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.