Abstract

BackgroundBurn treatment is associated with the need of dressing large cutaneous defects. There is a need of alternative search for the allogeneic skin as a source of grafting for a clinical use. Such sources include animals. For many years, porcine skin was used as a biological dressing for wounds or donor's fields, or residual fields after skin grafting. Current studies aim to minimize immunogenicity, inter alia, through the decellularization process. Materials and methodsThe decellularization methods and porcine skin resettlement of human keratinocytes and fibroblasts were evaluated. The mechanical properties of the dressings and their influence on the viability, apoptosis, population doubling, and cell cycle of keratinocytes and fibroblasts were examined. The inheritance of cell antigens responsible for histocompatibility on the human keratinocyte and fibroblast surface in the cultures incubated with examined variants of dressings from porcine skin were analyzed. ResultsThe most effective acellularization method is trypsinization. Morphology of the cell remained proper and stable during the whole experiment. In both fibroblast and keratinocyte cultures, the highest number of apoptotic cells was observed when samples were incubated with allogeneic skin. In the keratinocyte cultures, the highest number of live cells was observed when incubated with porcine transgenic acellular dermal matrix. The acellular matrices influence the increase of population doubling of keratinocytes in the cultures. ConclusionFor routine acellurization, trypsinization was chosen as the most effective method with preservation of tissue properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call