Abstract

Tissue engineering in orthopaedic trauma is needed. Progress has been made in all areas including regenerating bone, cartilage, soft tissue, and making up for bone defects with scaffolds. Bone regeneration and managing bone defects with scaffolds continue to be successful in the basic science realm with promising results, but currently, these successes are mostly limited to small animal models. Cartilage defects have more clinically available treatment options, but the benefits of "off-the-shelf" allograft options, and scaffolds, have little clinical evidence in the acute fracture setting. Most of the true chondrocyte replacement therapies such as matrix-induced autologous chondrocyte implantation and osteochondral allografts require delayed treatment while cell growth or graft matching occurs. Soft-tissue defects can be managed with tissue engineering for the skin with success, but muscle and nerve defects are still limited to the basic science arena. Although significant gains have been made in all areas for tissue engineering in basic science, and is very promising, this success currently comes with limited translation into clinical availability for the orthopaedic trauma patient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.