Abstract

This paper is devoted to discussing the topological structure of the arrow of time. In the literature, it is often accepted that its algebraic and topological structures are that of a one-dimensional Euclidean space \(\mathbb {E}^1\), although a critical review on the subject is not easy to be found. Hence, leveraging on an operational approach, we collect evidences to identify it structurally as a normed vector space \((\mathbb {Q}, \vert \cdot \vert )\), and take a leap of abstraction to complete it, up to isometries, to the real line. During the development of the paper, the space-time is recognized as a fibration, with the fibers being the sets of simultaneous events. The corresponding topology is also exposed: open sets naturally arise within our construction, showing that the classical space-time is non-Hausdorff. The transition from relativistic to classical regimes is explored too.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.