Abstract

The development of Ti alloys to manufacture dental implants has emerged in recent years due to the increased failure of commercially pure titanium (cpTi) implants. Thus, this study reviews existing information about the mechanical, chemical, electrochemical, and biological properties of the main Ti alloys developed over the past few years to provide scientific evidence in favor of using Ti-based alloys as alternative to cpTi. Ti alloys may be considered viable substitutes in the fabrication of dental implants. Such evidence is given by the enhanced properties of alloys, such as a low elastic modulus, high tensile strength, satisfactory biocompatibility, and good corrosion and wear resistances. In addition, Ti alloys may be modified at the structural, chemical, and thermomechanical levels, which allows the development of materials in accordance with the demands of several situations encountered in clinical practice. Although several in vitro studies have established the superiority of Ti alloys over cpTi, mainly in terms of their mechanical properties, there is no scientific evidence that supports the total replacement of this material in vivo. This review demonstrates the superiority of β-type alloys. However, it is evident that in vivo studies are encouraged to test new alloys to consolidate their use as substitutes for cpTi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.