Abstract
SIFT is a classical hand-crafted, histogram-based descriptor that has deeply influenced research on image matching for more than a decade. In this paper, a critical review of the aspects that affect SIFT matching performance is carried out, and novel descriptor design strategies are introduced and individually evaluated. These encompass quantization, binarization and hierarchical cascade filtering as means to reduce data storage and increase matching efficiency, with no significant loss of accuracy. An original contextual matching strategy based on a symmetrical variant of the usual nearest-neighbor ratio is discussed as well, that can increase the discriminative power of any descriptor. The paper then undertakes a comprehensive experimental evaluation of state-of-the-art hand-crafted and data-driven descriptors, also including the most recent deep descriptors. Comparisons are carried out according to several performance parameters, among which accuracy and space-time efficiency. Results are provided for both planar and non-planar scenes, the latter being evaluated with a new benchmark based on the concept of approximated patch overlap. Experimental evidence shows that, despite their age, SIFT and other hand-crafted descriptors, once enhanced through the proposed strategies, are ready to meet the future image matching challenges. We also believe that the lessons learned from this work will inspire the design of better hand-crafted and data-driven descriptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.