Abstract

AbstractTransition state theory was introduced in the 1930s to account for chemical reactions. Central to this theory is the idea of a potential energy surface (PES). It was assumed that quantum mechanical computation, when it became possible, would yield such surfaces, but for the time being they would have to be constructed empirically. The approach was very successful. Nowadays, quantum mechanical ab initio electronic structure calculations are possible and from their results PESs can be constructed. Such surfaces are now widely used in the explanation of chemical reactions in place of the traditional empirical ones. It is argued here that theoretical basis of such PESs is not quite as clear as is usually assumed and that, from a quantum mechanical perspective, certain puzzles remain.KeywordsPotential energy surfaceSchrödinger Coulomb HamiltonianPermutational symmetry

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.