Abstract

The transformation of a weak hydrogen bond in the free enzyme into a low-barrier hydrogen bond (LBHB) in the tetrahedral intermediate has been suggested as an important factor facilitating catalysis in serine proteases. In this work, we examine the structure of the H-bond in the Asp102-His57 diad of serine proteases in the free enzyme and in a covalent tetrahedral complex (TC) with a trifluoromethylketone inhibitor. We apply ab initio quantum mechanical calculations to models consisting of a large molecular fragment of the enzyme active site, and the combined effect of the rest of the protein body and the solvation by surrounding bulk water was simulated by a self-consistent reaction field method in our novel QM/SCRF(VS) approach. Potential profiles of adiabatic proton transfer in the Asp102-His57 diad in these model systems were calculated. We conclude that the hydrogen bond in both the free enzyme and in the enzyme-inhibitor TC is a strong ionic asymmetric one-well hydrogen bond, in contrast to a previous suggestion that it is a weak H-bond in the former and a double-well LBHB in the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call