Abstract

Methamphetamine (METH) abuse results in long-term damage to the dopaminergic system, manifesting as decreases in dopamine (DA) tissue content, DA transporter binding, as well as tyrosine hydroxylase and vesicular monoamine transporter immunostaining. However, the exact cascade of events that ultimately result in this damage has not been clearly elucidated. One factor that has been heavily implicated in METH-induced DA terminal degeneration is the production of nitric oxide (NO). Unfortunately, many of the studies attempting to clarify the role of NO in METH-induced neurotoxicity have been confounded by issues such as the disruption of METH-induced hyperthermia, preventing the formation of strong conclusions. As a result, there is a body of work suggesting that NO is sufficient for METH-induced neurotoxicity, while other studies suggest that NO does not play a role in METH-induced degeneration of DA nerve terminals. This review summarizes the existing studies investigating the role of NO in METH-induced neurotoxicity, and argues that while NO may be necessary for METH-induced neurotoxicity, it is not sufficient. Finally, important areas of future investigation are highlighted and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.