Abstract
The question of whether there exists a finite mobility in the standard Holstein model with one vibrational mode on each site remains unclear. In this Communication, we approach this problem by employing the hierarchical equation of motion method to simulate model systems where the vibrational modes are dissipative. It is found that, as the friction becomes smaller, the charge carrier mobility increases significantly and a friction-free limit cannot be obtained. The current autocorrelation functions are also calculated for the friction-free Holstein model, and converged results cannot be obtained with an increase in the number of sites. Based on these observations, we conclude that a finite mobility cannot be defined for the standard Holstein model in the parameter regime explored in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.