Abstract
In amphibians, there is some evidence that (1) anatomically separate brainstem respiratory oscillators are involved in rhythm generation, one for the buccal rhythm and another for the lung rhythm and (2) they become functionally coupled during metamorphosis. The present analysis, performed on neurograms recorded using brainstem preparations from Lithobates catesbeianus, aims to investigate the temporal organisation of lung and buccal burst types. Continuous Wavelet Transfom applied to the separated buccal and lung signals of a neurogram revealed that both buccal and lung frequency profiles exhibited the same low frequency peak around 1 Hz. This suggests that a common ‘clock’ organises both rhythms within an animal. A cross-correlation analysis applied to the buccal and lung burst signals revealed their similar intrinsic oscillation features, occurring at approximately 25 Hz. These observations suggest that a coupling between the lung and buccal oscillators emerges at metamorphosis. This coupling may be related to inter-connectivity between the two oscillators, and to a putative common drive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.