Abstract

We consider the fate of the observable universe in the light of the discovery of a dark energy component to the cosmic energy budget. We extend results for a cosmological constant to a general dark energy component and examine the constraints on phenomena that may prevent the eternal acceleration of our patch of the universe. We find that the period of accelerated cosmic expansion has not lasted long enough for observations to confirm that we are undergoing inflation; such an observation will be possible when the dark energy density has risen to between 90% and 95% of the critical. The best we can do is make cosmological observations in order to verify the continued presence of dark energy to some high redshift. Having done that, the only possibility that could spoil the conclusion that we are inflating would be the existence of a disturbance (the surface of a true vacuum bubble, for example) that is moving toward us with sufficiently high velocity, but is too far away to be currently observable. Such a disturbance would have to move toward us with speed greater than about $0.8c$ in order to spoil the late-time inflation of our patch of the universe and yet avoid being detectable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.