Abstract

We consider the class of effective supergravity theories from the weakly coupled heterotic string in which local supersymmetry is broken by gaugino condensation in a hidden sector, with dilaton stabilization achieved through corrections to the classical dilaton Kähler potential. If there is a single hidden condensing (simple) gauge group, the axion is massless (up to contributions from higher dimension operators) above the QCD condensation scale. We show how the standard relation between the axion mass and its Planck scale coupling constant is modified in this class of models due to a contribution to the axion–gluon coupling that appears below the scale of supersymmetry breaking when gluinos are integrated out. In particular there is a point of enhanced symmetry in parameter space where the axion mass is suppressed. We revisit the question of the universal axion as the Peccei–Quinn axion in the light of these results, and find that the strong CP problem is avoided in most compactifications of the weakly coupled heterotic string.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call