Abstract

AbstractLarge basis set ab initio calculations at correlated levels, including MP2, single reference, as well as multireference configuration interaction, carried out on the methane potential energy surface, have located and characterized a transition structure for stereomutation (one imaginary frequency). This structure is best described as a pyramidal complex between singlet methylene and a side‐on hydrogen molecule with Cs symmetry. At the single reference CI level, it lies 105 kcal/mol above the methane Td‐ground state but is stable relative to dissociation into CH2(1A1) and H2 by 13 kcal/mol at 0 K (with harmonic zero point energy (ZPE) corrections for all structures). Dissociation of the transition state into triplet methylene and hydrogen also is endothermic (by 4 kcal/mol), but single bond rupture to give CH and H. is 3 kcal/mol exothermic. Thus, it does not appear likely that methane can undergo stereomutation classically beneath the dissociation limit. Confirming earlier conclusions, side‐on insertion of 1A1 CH2 into H2 in a perpendicular geometry occurs without activation energy. Planar (D4h) methane (130.5 kcal/mol) has four imaginary frequencies. Two of these are degenerate and lead to equivalent planar C2v structures with one three‐center, two‐electron bond and two two‐electron bonds and two imaginary frequencies. The remaining imaginary frequencies of the D4h form lead to tetrahedral (Td) and pyramidal (C4v) methane. The latter has three negative eigenvalues in the force‐constant matrix; one of these leads to the Td global minimum and the other to the Cs (parallel) stereomutation transition structure. Multireference CI calculations with a large atomic natural orbitals basis set produce similar results, with the electronic energy of the Cs stereomutation transition state 0.7 ± 0.5 kcal/mol higher than that of CH + H. dissociation products, and a ZPE‐corrected energy which is 5 ± 1 kcal/mol higher. Also considered are photochemical pathways for stereomutation and the possible effects of nuclear spin, inversion tunneling, and the parity‐violating weak nuclear interaction on the possibility of an experimental detection of stereomutation in methane. © 1995 by John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call