Abstract

Adiabatic pulses are most conveniently studied in the frequency frame which is a frame of reference rotating at the instantaneous frequency of the pulse. In this frame the adiabatic condition ‖γBeff‖ ⪢ |θ≳| sets an upper limit on the sweep rate θ≳ of the Beffvector. This, in turn, places a lower bound on the pulse duration. Adiabatic behavior is studied at the threshold duration and two pulses are examined: (i) a pulse with a constant sweep rate (cappulse) and (ii) a conventional sech/tanh adiabatic pulse. It is shown that the sech/tanh pulse performs robust magnetization inversion although it seems to violate the adiabatic condition. This puzzling phenomenon is solved by switching into a second-order rotating frame of reference (SORF) where it is shown that the adiabatic condition is fulfilled. This frame coincides with the frequency frame at the beginning of the pulse. Assuming an RF field along thex-axis of the frequency frame, the SORF then rotates about the commony-axis during the pulse with thez-axis of the new frame aligned with the Beffvector. It is shown that adiabatic motion may be performed in the SORF, in which the sweep rate is increased indefinitely; the adiabatic condition is violated by this motion in the frequency frame but is fulfilled in the SORF. The lower bound on the sweep rate in the frequency frame is thereby lifted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.