Abstract

AbstractIn this paper the rotational temperature of OH(A–X) and rotational population distribution of OH(A) are investigated for streamer discharges in bubbles and glow discharges with liquid electrodes, both at atmospheric pressure. The influence of the filling gas is investigated in detail and the non‐Boltzmann nature of the rotational population distributions is discussed. It is shown that the rotational population distribution of OH(A) is even at atmospheric pressure an image of the formation process or is at least influenced by it. As a consequence the rotational temperature is in this case not a good estimate of the gas temperature as the rotational population distribution is not an image of a kinetic temperature. In some cases rotational states with small rotational numbers offer a possibility to obtain the gas temperature. The influence of these results on the determination of gas temperatures in the field of liquid plasmas is discussed.magnified image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.