Abstract

<p>The relation between the solar wind dynamic pressure and magnetopause standoff distance is usually supposed to be R<sub>SUB</sub>~P<sub>d</sub><sup>-1/N</sup>. The simple pressure balance condition gives N=6, however N varies in empirical magnetopause models from 4.8 to 7.7. Using several MHD models, we simulate the magnetospheric response to increases in the dynamic pressure by varying separately the solar wind density or the velocity. We obtain different values of N depending on which parameter, density or velocity, has been varied and for which IMF orientation. The changes in the standoff distance are smaller (higher N) for a density increase and greater (smaller N) for a velocity increase for southward IMF. We explain this result by enhancement of the Region 1 current that moves the magnetopause closer to the Earth for a high solar wind velocity. We suggest for developers of new empirical magnetopause models in the future to replace the simple relation between R<sub>SUB</sub> and P<sub>d</sub> with a fixed N by a more complicated relation which would separate inputs in the dynamic pressure from the density and velocity taking into account the IMF orientation.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.