Abstract

AbstractIntroduction:In the recent years, some publications (mainly from one group of authors) have dealt with the effectiveness of proton–boron fusion therapy (PBFT). This theory is based on the Q-value of three produced α particles in the reaction of protons with boron (11B). They claim that this reaction significantly increases the absorbed dose in the target volume. However, the current study would re-evaluate their method to show if PBFT is really effective.Methods and materials:A parallel 80-MeV proton beam was irradiated on a water medium in a cubic boron uptake region (BUR). The two-dimensional dose distribution and percentage depth dose of protons, alphas and all particles were calculated using tally F6 and mesh-tallies by Monte Carlo N Particle Transport code.Results:The results not only showed that the dose enhancement in BUR is neglectable but also the higher density of BUR in comparison with water led to decrement of dose in this region. Because of low cross section of boron for proton beam (<100 mb), the α particles’ dose is 1,000 times lower than the proton dose.Conclusions:The physical aspects and the simulation results did not show any effectiveness of the PBFT for proton therapy dose enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.