Abstract
Experimental studies have shown that the Co3O4(111) surface exists as an unreconstructed (1 × 1) truncated bulk termination. Polarity compensation of this polar surface thus has to occur by a transfer of electrons, which creates partially occupied valence states and makes the surface metallic. Here we show by Hubbard-U corrected density-functional theory calculations that such a polarity compensation mechanism would make the surface highly reactive, which is not in agreement with experimental observations. An additional compensation mechanism has to be at work, by which the partially occupied valence band states are filled by electrons without requiring a reconstruction of the surface. As such an mechanism we propose the transfer of electrons from bulk donor defects to the surface. By employing this mechanism in our calculations we recover the experimentally observed reactivity. This demonstrates that for all polar surfaces, which are fully or partially polarity compensated by the transfer of electrons, additional electronic effects have to be considered in any electronic structure calculation in order to capture the correct surface chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.