Abstract

There is growing concern about the response of contemporary ecosystems to increasing and novel anthropogenic pressures and environmental conditions. Palaeoecology is crucial to understanding how ecosystems have responded to past environmental changes and can inform management of contemporary ecosystems and contribute to forecasts of ecosystem responses to change. However, palaeoecological data are subject to uncertainties that arise from environmental processes, field and laboratory methods, and data processing, and that affects inferences drawn from them. Understanding how different sources of uncertainty affect the analyses of proxy records remains limited, and records are often interpreted solely qualitatively. We present a virtual ecology approach for assessing how uncertainties inherent in empirical proxy data influence statistical analyses and the inferences drawn from them. In the virtual ecology approach, both the data and the observational process are recreated in simulation to assess sampling and analytical methods. We demonstrate results from a new model for simulating core-type samples of pseudoproxies comparable to empirical proxy data but not subject to the same sources of proxy and chronological uncertainties. These ‘error-free’ pseudoproxies generated under known driving conditions have uncertainties (e.g. core mixing, sub-sampling, and proxy quantification) systematically introduced to them to assess how individual and combined sources of uncertainty influence analytical methods. Results indicate that inferences drawn from statistical analysis, such as the stability of a system, or the rate of ecological turnover, can change substantially between the ‘error-free’ pseudoproxies, and degraded and sub-sampled data. We show how our approach can advance understanding of uncertainties in palaeoecological data and how it can help shape research questions by quantifying of their influence on proxy data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.