Abstract

Various Bell inequalities are trivial algebraic properties satisfied by each line of particular data spreadsheets.It is surprising that their violation in some experiments, allows to speculate about the existence of nonlocal influences in Nature and to doubt the existence of the objective external physical reality. Such speculations are rooted in incorrect interpretations of quantum mechanics and in a failure of local realistic hidden variable models to reproduce quantum predictions for spin polarisation correlation experiments. These hidden variable models use counterfactual joint probability distributions of only pairwise measurable random variables to prove the inequalities. In real experiments Alice and Bob, using 4 incompatible pairs of experimental settings, estimate imperfect correlations between clicks, registered by their detectors. Clicks announce detection of photons and are coded by 1 or -1. Expectations of corresponding ,only pairwise measurable, random variables are estimated and compared with quantum predictions. These estimates violate significantly the inequalities. Since all these random variables cannot be jointly measured , a joint probability distribution of them does not exist and various Bell inequalities may not be derived. Thus it is not surprising that they are violated. Moreover,if contextual setting dependent parameters describing measuring instruments are correctly included in the description, then imperfect correlations between the clicks may be explained in a locally causal way. In this paper we review and rephrase several arguments proving that the violation of various Bell inequalities may neither justify the quantum nonlocality nor allow for doubt regarding the existence of atoms, electrons and other invisible elementary particles which are building blocks of the visible world around us including ourselves.

Highlights

  • External physical reality existed before we were able to probe it with our senses and experiments

  • In section Contextual Description of Spin Polarization Correlation Experiments we show how, by incorporating in an LRHVM setting dependent parameters describing measuring instruments, we may explain in a locally causal way correlations between distant outcomes observed in spin polarization correlation experiments (SPCE)

  • Subsequent setting -dependent photon identification procedures, mimicking procedures used in real experiments, allowed the creation of new data samples containing only pairs (±1,±1) for each experimental settings. Because these new data sets were not simple random samples extracted from the raw data, the estimated values of pairwise expectations, obtained using these setting- dependent samples, could violate CHSH as significantly as it was observed in SPCE

Read more

Summary

INTRODUCTION

External physical reality existed before we were able to probe it with our senses and experiments. According to QM, such joint probability distributions do not exist in EPRB, for some settings, quantum predictions violate CHSH inequalities. There exists a counterfactual joint probability distribution of all these predetermined outcomes and CHSH inequalities may not be violated [86, 97,98,99] This paradox exists only on paper because an ideal EPRB experiment does not exist and in SPCE we neither observe strict correlations nor anti-correlations between clicks. We show how imperfect correlations between clicks in SPCE may be explained in a locally causal way without evoking quantum magic

EXPERIMENTS
CONCLUSIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.